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Abstract 

In solar facular regions (plages) three distinct classes of magnetic features are 

observed: small-scale flux tubes, knots, and pores. Small flux tubes have granular 

scales; they are in constant motion and can well be simulated numerically according 

to the concept of magneto-convection. On this dynamic background one observes 

quite stable, long-lived and bright objects called facular knots, with a diameter of 3-8 

Mm and fine (less than 1 Mm) inner filamentary structure. Their magnetic field 

strength varies in the range from 250 to 1200 G. Our present article considers only 

these active formations. The stationary MHD problem is solved and analytical 

formulae are derived for calculation the pressure, density, temperature, and Alfven 

Mach number in the studied configuration from the corresponding magnetic field 

structure. The facular knot is modeled in a hydrostatic atmosphere defined by the 

Avrett & Loeser model (2008) and is surrounded by a weak (2 G) external field 

corresponding to the average global magnetic field strength on the solar surface. The 

constructed 3D analytical model presents the facular knot as a magnetic “fountain” 

with numerous slender fibrils and allows solving the following tasks: 1. Calculation 

of temperature profiles of the knot at any height of the atmosphere; 2. Description of 

ring brightening and fine azimuthal fibril structure observed in plages at high spatial 

resolution; 3. New interpretation of Center-to-Limb Variation problem that fits well 

with the observational data. 
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1. Introduction 

Solar faculae represent, second after sunspots, significant and prominent 

manifestation of solar activity. Despite the fact that facula is marginally luminous in 
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comparison to the quiet photosphere nevertheless the contribution of faculae as a 

whole cannot be ignored. This can be ascertained by considering that the Total Solar 

Irradiance is higher (by 0.1%) at the peak of the sunspot activity than at the 

minimum, i.e. the increased luminosity of the faculae overlaps the decrease in the 

total luminosity of the Sun, caused by the appearance of dark sunspots. This is one of 

the reasons why great attention has been paid to the study of faculae in solar physics. 

Faculae, like sunspots, are magnetic in nature, although their magnetic fields are 

much weaker in comparison to that of spots. Obviously, for this reason, the 

appearance of faculae in active regions precedes and succeeds the formation of 

sunspots. It is generally accepted (Title et al., 1992) that there are three different 

classes of magnetic structures in the facular regions: 1. Small-scale magnetic 

elements; 2. Facular knots and 3. Pores. The first category has "granular" scales (Title 

and Berger, 1996; De Pontieu et al, 2006; Steiner, 2005; Berger et al, 2007): diameter 

of 0.5-1 angular seconds, lifetime of about 5-10-15 minutes, and magnetic field 

strength close to the equipartition level (150-250 Gs). These small, short lived 

elements are very dynamic as they are in constant motion and their low brightness is 

due to the interaction with magnetic field of convective granules which results in a 

slight compression leading to increased luminosity and consequent magnetic 

structuring of plasma. These structures manifest themselves through “the dense 

forest” of more transparent magnetic flux tubes surrounding them (Berger et al, 2007; 

Topka et al, 1997). The physical nature of these elements is well simulated 

numerically in the framework of magneto-convection (Keller et al., 2004). 

 

Against this changing background, however, separate, less mobile, more stable, 

larger and long-lived facular formations (facular knots) that live up to a day or more 

are observed in plages. So, the single facular formation with the angular size about 4-

10 arcsec, magnetic field strength about 900 G and lifetime more than 13 hours was 

studied in detail by (Kolotkov et al., 2017) for the detection of long-term oscillations 

with periods of more than an hour. Apparently, these objects are located at the 

junctions of several supergranular convection cells. In these cells radial-horizontal 
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plasma flows concentrate to several dozens of magnetic facular elements, which look 

like separate magnetic flux tubes or bundles, into inter-supergranular lanes, raking 

them as a result of the frozen field in plasma to the edges of the cells 

(Mehltretter,1974). The plasma flows and reduced gas pressure in the intergranular 

lanes provide the required stabilizing effect for a prolonged existence of the facular 

knots. Therefore, these structures can be considered as stable formations, capable to 

oscillate as integral objects near the equilibrium position. Although on the whole the 

knots have an increased brightness, they exhibit a central dip in temperature profile 

(like the Wilson depression in sunspots) and in this sense they already approach pores 

which are small dark sunspots without penumbras.  

In this work, we will investigate only such relatively stable, large and long-lived 

bright photospheric-chromospheric magnetic formations which are termed as the 

facular knots. The gas temperature in the facular knot on the average is few hundred 

degrees Kelvin higher than the temperature of the surrounding atmosphere, and the 

temperature contrast between the individual bright elements inside the body of 

facular knot does not, probably, exceed 100-200K. At high angular resolutions (New 

Swedish 1-m Telescope), the facular fields in the photosphere are observed to possess 

besides the central temperature dip a regular concentric segmental brightening (Lites 

et al., 2004, Berger et al., 2007). Explanation of the nature of these specific 

temperature variations is one of the tasks of the present model. Recently (Jafarzadeh 

et al, 2017), when observing the low chromosphere at altitudes of the temperature 

minimum, observed a very fine structure in the form of “slender CA II H fibrils 

mapping magnetic fields”. A similar result was earlier obtained in (Pietarila et al. 

2009) by observations in CA II K line. This remarkable phenomenon of very fine 

structure of chromospheric fibrils also requires its own description and explanation. 

There are various kinds of wave and oscillatory processes that are observed in the 

facular fields. Roughly speaking these oscillations can be divided into two classes of 

different physical nature. The most studied are short-period oscillations with periods 

from 3-5 and 10-15 minutes (see, for example, Baltasar,1990;  Chelpanov,  Kobanov 

& Kolobov, 2015 and many others). They are usually interpreted as manifestations of 
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acoustic and MHD waves running along magnetic flux tubes in the faculae where 

these flux tubes play the role of resonators or waveguides. Many works have been 

devoted to the study of these processes, but they practically do not shed light on 

actual magnetic structure of faculae. Observing these wave phenomena, one can only 

estimate the phase velocities of the waves in order of magnitude and, accordingly, 

obtain the averaged order estimates of the magnetic field intensity and the plasma 

density. However, recently there have been reports that long-period oscillations with 

periods from 1 to 4 hours are observed in large stable faculae (Kolotkov et al., 2017; 

Strekalova et al., 2016). These oscillations can no longer be understood within the 

framework of propagating MHD wave models or within the framework of the "vortex 

shedding" mechanism originated due to the stream flowing outside the faculae 

(Nakariakov et al., 2009). Apparently, they reflect the oscillations of the faculae as a 

whole, as a single magnetic structure. In such oscillations, significant masses of gas 

are involved in the oscillatory process and therefore their periods are sufficiently 

large.  

However, here we are not going to consider the problem of the oscillatory proper-

ties of faculae (it would require a separate study), but will concentrate only on the 

construction of their 3D steady state analytical MHD model.  

One of the first physical models of the faculae was the "hot wall" model (Spruit, 

1976). It represents the faculae as a vertical magnetic flux tube penetrating deep into 

the photosphere and even into the upper part of convective zone. It is assumed that 

the plasma density in such a tube is sharply reduced, and thus a deep Wilson depres-

sion is created which, if viewed from the side, allows us to see through the transpar-

ent tube of the faculae the hot layers of the photosphere and the convective zone - hot 

walls. However, this simply overlooks the fact that when such a flux tube is observed 

on the limb, the observer's line of sight passes at right angles to the axis of the radial-

ly oriented facular tube, and its low layers, its hot walls, are simply not visible in this 

position. It turns out that, according to this model, faculae cannot be observed on the 

limb in principle. However, observations show the opposite picture: faculae are best 

seen on the limb! This drawback of the model was noted in many works  (Libbrecht 
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& Kuhn, 1984; Shatten et al.,1986; Wang & Zirin,1987). Nevertheless, observers still 

refer to this model: Quintero et al. (2016). Kostik & Khomenko (2016), analyzing the 

causes of the observed brightness of facular tubes, likewise come to the conclusion 

that “ facular regions appear bright not only because of the Wilson depression in 

magnetic structures, but also owing to real heating”. Earlier, the same opinion has 

been expressed in (Chapman & Klabunde,1982). 

The other model is “hillock and cloud model” for faculae (Shatten et al., 1986). It 

tries to describe faculae as objects not related to specific magnetic structure but pos-

sessing enhanced brightness in the vicinities of sunspots mainly due to the uplifting 

of hot sub-photospheric plasma which is otherwise entrapped because of the large 

magnetic fields near the sunspot. This vertical transfer of sub-photospheric hot plas-

ma according to the authors is assumed to take place along different magnetic flux 

tubes with arbitrary parameters, being produced by unknown physical mechanisms, 

and results in the formation of hot clouds which are actually observed by the obser-

vers as faculae. This model according to our opinion doesn’t represent the real physi-

cal nature of faculae and therefore can be mentioned for purely historical reasons. 

 

2.1. Stationary MHD and the governing equations 

System of equations of ideal MHD in the steady case has the following form:  

                               1(4 )P curl       V V B B g ,       (1) 

                                            0,          div  V
                           (2)

 

                                                           0,div B                                                            (3)  

                                        
1  P T    .                                   (4) 

Here B  is magnetic field vector, V is flow velocity vector of the fluid, , , ,P T   are 

pressure, density, temperature and average molar mass of the gas respectively.  

The energy transport equation which has a very complicated form for solar 

plasma is left undetermined. Exact analytical solutions to the problems of heat trans-

fer and energy dissipation in active solar elements like sunspots, faculae, prominenc-

es, coronal loops and etc. are now almost impossible not only because of complicated 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/sty3050/5184491 by guest on 17 N

ovem
ber 2018



geometry, spatial inhomogeneity and tremendous difficulty in 3D radiative transfer 

calculations in the continuum and in the spectral lines. We likewise have further dif-

ficulties because of our inability to reliably evaluate the contribution of MHD wave 

dissipation and electric current heating (Joule heating) to the energy balance of the 

given magnetic structure under study.  

Our approach to the modeling of active solar elements is as follows: equations 

(1)-(4) allow to determine the pressure, density, temperature and velocity of the 

plasma configuration required for its steady existence in the case when the magnetic 

structure of the element is considered to be known. The stationary distributions of 

temperature and density derived for a given magnetic structure should answer maxi-

mally the observational properties of the modeled object. 

When such a result is obtained we can be sure that the magnetic structure of the 

object was chosen correctly. At the same time, we must be prepared to explain the 

physical reasons for why the theoretically obtained from the balance of forces tem-

peratures turned out to be such that they are observed in reality. Evidently, the corre-

spondence of the observed and theoretically found temperature distributions should 

be explained by a specific heat transfer mechanism in the given configuration. For 

example, in the case of a sunspot, all models must present considerable low tempera-

ture of the umbra with respect to the surrounding photosphere because the strong ver-

tical magnetic fields inhibit the convective motion of plasma in sunspots. Likewise, 

when the equilibrium model of the solar filaments or prominences gives the very cool 

plasma in their dense bodies, one can explain the low temperature derived from the 

steady state condition as a result of fast cooling of the gas due to high irradiance of 

dense plasma in the coronal conditions.  

Most probably faculae, fibrils and floccules share one and the same magnetic 

flux tube structure. Also it is quite possible that these structures are heated by wave 

dissipative processes and/or by joule heating mechanism in rarefied plasma as it oc-

curs in the solar corona. Unlike corona which has very low density and therefore very 

high temperature, the chromospheric structures like fibrils, floccules and photospher-

ic structures like faculae are not very hot because of corresponding high chromo-

spheric densities in comparison with corona. 

2.1. Boundary conditions of the problem 

Facular knots are regarded as sufficiently solitary magnetic structures and 

therefore their magnetic field at large heights and at large radial distances from the 

center of the facular field should attain some background value. 
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The demarcation boundary at the bottom of the facular structure is defined as 

the depth at which the average magnetic pressure in the magnetic flux tube is compa-

rable to the dynamic pressure of convective turbulent pulsations in the photosphere: 
1 2 2(8 ) 0.5 ( )B Vturb   . At this bottom boundary the radial profiles of pressure and 

temperature should have the typical form where the central region is a bit lower than 

the surroundings, and at large distances from the center, the profiles approach photo-

spheric values. 

At the periphery of this magnetic structure, the radial component of magnetic 

field vector approaches zero and the balance of total pressures on either sides of the 

object is attained as it was demonstrated in the work (Solov'ev & Kirichek, 2015) 

which studied the equilibrium of vertical magnetic flux tubes in the solar atmosphere. 

However, as our calculations show, there is no need to attribute an abrupt sideward 

boundary to the facular knot in our model because the described parameters steadily 

approach the background values as we move away from the center of the object. 

2.2. Derivation of the governing equation 

According to stationary ideal MHD, the plasma flows along the magnetic lines 

of force: 

                                       4
AM




B
V ,                                                (5) 

where A

A

V
M

V
  is Alfven Mach number, the ratio of the plasma fluid velocity and the 

corresponding Alfven velocity.  From the equations (2), (3) and (5) it follows that:   

                                    
 4 0AM  B ,                                            (6) 

i.e. the factor AM   doesn’t  change along the magnetic field line but can vary arbi-

trarily as we move from one field line to an another.  

We assume that the plasma flow inside the facular knot is not very strong, Alfven 

Mach number does not exceed unity, and the flow remains sub-alvenic. Likewise, the 

external plasma flow with respect to the facular knot remains sub-alfvenic. The su-

per-convective converging flow is added up to the hydrostatic pressure ( )exP z of the 

external medium at the photospheric level as a very small dynamic component 

sup

20.5 ( ) erex z V , where superV is the velocity of horizontal flow in super-granulation 

cells. The height profile for this velocity field is unknown and it is only possible to 

give an order of magnitude value: sup 0.3 0.5 /erV km s  . The Alfven velocity in the 

chromosphere with a magnetic field strength of about 10 G or more exceeds 10 km/s 

and therefore Alfven Mach number for external layers of the facular knot is 2 1AM  . 
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The magnitude of the plasma flow velocity inside the knot doesn’t exceed 1.0 /km s  

(Quintero et al., 2016). The same estimation is quite satisfactory for polar faculae 

(Okunev & Kneer, 2004) and therefore we can safely assume that the flow field of 

gas inside these knots is sub-alfvenic: 1AM  . 

We rearrange the L.H.S of the equation (1), using the condition (5): 

          

   

 

2

2 2
2

1

2

1
( ) .

2 4 4 4 4

A A A A

V curl

M M M M
B curl

 


   

 
      

 

     
           

        

V V V V

B B B B

      (7)  

We use the respective vector identity and the relation (6) to get the following equa-

tion: 

          

   
2

21

4 2 4 4

A A AM M M
B curl 

  

     
                   

V V B B B B  .       (8) 

We transform the last term in the R.H.S of equation (8) using again the condition (6) 

to obtain the following equation for the steady state of the system: 

               2 2( ) 4  4  A AM M P curl          B B B B B B g .                  (9) 

At last, by representing the magnetic part of Lorenz force as 

  21
( )

2
curl B     B B B B , we rewrite (9) in the form (Solov'ev & Kirichek, 2016), 

which constitutes the base our present research: 

            
 

2
2 2(1 ) ( (1 )) 4  ( ) 4  

8
A A

B
M M P  


        B B B B g .             (10) 

The idea behind our approach is based upon the experimental observations of the 

long lived and stable active elements such as sunspots, pores, facular knot, chromo-

spheric filaments (fibrils) and prominences, we construct the magnetic configuration 

of these objects up to the accuracy of few arbitrary functions and then solve the sta-

tionary MHD problem for these magnetic structures and finally obtain pressure, den-

sity and Alfven Mach number from the three components of equation (10). Later, the 

obtained pressure and density distributions are used in accordance with the ideal gas 

equation to find the respective temperature distribution.  In this way for every given 
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configuration of the magnetic field B(r) we can calculate all the required physical pa-

rameters , ,P T , AM   for the stationary existence of this configuration. This allows us 

to compare the theoretically obtained results with the observed data. The arbitrariness 

in the expression for the magnetic field allows us to freely choose the most relevant 

function that best fits the observed data. The same approach was used for modeling 

the sunspot (Solov'ev & Kirichek, 2016). 

3. Magnetic structure of steady facular configuration 

  We shall assume that the magnetic field of our configuration under study is not 

twisted i.e. the field has only two independent components but both of them are de-

pendent on all three coordinates in the cylindrical system ( , ,r z ): 

                                  
{ ( , , ) ,0 , ( , , ) }r r z zB r z B r z  B e e e .                       (11) 

The z-axis is directed upward along the major axis of the cylinder and the gravita-

tional force is represented by: g   zg e .  The azimuthal component of the equilib-

rium equation (10) for the magnetic field of the type (11), with 0B  , reduces to a fol-

lowing simple form:  

                                               

2

( ) 0
8

B
P

 


 


.                                           (12) 

From the above expression we get the important formula for the pressure balance as: 

                                    

2( , , )
( , , ) ( , )

8

B r z
P r z r z





  .                           (13) 

The function ( , )r z can be clearly interpreted as the total (Gas + Magnetic) pressure 

which doesn’t depend on the cylindrical angular coordinate but preserves the depend-

ence on r and z.  Far away from the knot it takes the following form:
 

                                                               

2 ( )
( , ) ( )

8

ex
ex

B z
z P z


    ,                           (14) 

where exB is the external magnetic field strength with respect to the given magnetic 

configuration, and
 

( )exP z  is the gas pressure out of the knot. In case of small exB  we 
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have ( , ) ( )exz P z   . Though there is small-scale turbulence in the photosphere 

we can fairly assume that it is very close to the hydrostatic state:         

                                                                       

( )
( )ex

ex

P z
g z

z



 


.                              (15) 

We now write down equations for two other components in the equation (10) by sub-

stituting expression (13) in the R.H.S. 

   

2 2 2(1 ) (1 ) (1 )

4 4

( , )
( , , ) ,

A z z z A A
z r z r

M B B B M M
B B B B

z r z r

r z
g r z

z

 

 

        
     

      


 



               (16) 

    

2 2 2(1 ) (1 (1 ( , )

4 4

A r r r A A
z r z r

M B B B M M r z
B B B B

z r z r r 

         
     

        .         (17) 

Now we determine the components of the magnetic field with the help of the magnet-

ic flux function. Equation (3) in terms of cylindrical coordinates has the form: 

                                             

1
0z

r

B
rB

z r r

 
 

 
,                                               (18)               

 It follows that the longitudinal and radial fields can be expressed in terms of the 

function 
0

( , )
r

zA r z b rdr   and some arbitrary dimensionless function of the magnet-

ic flux and the angular coordinate ( , )F A  : 

              

0

0

1 ( , )
( , , ) ( , ) ( , );     ( , ) ; 

1 ( , )
( , , ) ( , ) ( , );    ( , ) = . 

z z z

r r r

A r z
B r z B F A b r z b r z

r r

A r z
B r z B F A b r z b r z

r z

 

 


 




 



           (19) 

0B
 
is taken as the unit for the measurement of magnetic field strength. By a simple 

substitution of these expressions in (18), one can see that the magnetic field given by 

(19) is conditionally solenoidal for any arbitrary differentiable function ( , )F A  . 

This simple result is extremely important not only when modeling active solar for-

mations, but also in a general physical sense. It means that in any vertical non-twisted 

flux tube an arbitrary angular variation of the field can be introduced! It allows, in 

particular, dividing the flux tube of the modeled object into many slender filaments 
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with the corresponding circular electric currents which could make a significant con-

tribution to chromospheric plasma heating (along with the wave dissipation). 

The dependence of the function F on the angular coordinate being the arbitrarily de-

fined, can be taken, for example, in such a simple type: 

                                       

2 2( , ) 1 ( , ) 1 sin( )i i

i

F A f A k A a m       ,                      (20)  

where ( , )f A  is the positive oscillating function with decreasing amplitude as we 

move above in height because of magnetic flow A decreasing with height. In (20) 

,i ia m are some positive coefficients, k is the reciprocal height scale which was in-

troduced here to rewrite equation (20) in a dimensionless form. The different values 

of im  allow us to describe as deformed temperature profile of the knot (m <1), both 

the fine discrete structure inside the facular knot due to the combination of radial and 

angular dependence in equation (20) (see Fig.1). In particular, the circular and semi-

circular structures can be described which are usually observed in the facular fields at 

high angular resolutions (Lites et al., 2004). At large m (m = 20, 40) the magnetic 

structure with very slender fibrils can be obtained according with the observations 

(Jafarzadeh et al, 2017) (see Fig.1). If there is no angular dependence, than 1F  .   

By substituting expression (19) in the formulas (16) and (17) we get: 

2 2 2
2 2 20 ln(1 ) ln(1 ) ( , )

(1 ) ( , )
4

r r A A
A z r r z r

B b b M M r z
M F A b b b b b

z r z r r




         
       

        
. (21)  

2 2 2
2 2 20 ln(1 ) ln(1 )

(1 ) ( , )
4

( , )
( , , ) .

z z A A
A z r z z r

B b b M M
M F A b b b b b

z r z r

r z
g r z

z




 

        
       

       


 



   (22) 

The R.H.S. of the expression (21) doesn’t contain the angular dependence. Conse-

quently, we must take: 

                                   

2 21 ( , ) ( , ) ( )AM r F A G A     ,                                  (23) 

where G(А) is some arbitrary function of the magnetic flow which is independent of 

the angular coordinate. In this case, the expression 21 ( , )AM r    depends on A and 
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 only, and therefore the logarithmic terms in the second round brackets of the L.H.S. 

of the equations (21) and (22) identically equal to zero due to Equation (19). As we 

see from (23), the negative values of G(А) correspond to super-alfvenic flow 

2 ( , ) 1AM r   . As it was noted above, the observations of solar plages provide no basis 

for such a conclusion (Quintero et al., 2016; Okunev & Kneer, 2004). Hence, we 

must assume that 1 > G(А) > 0. It gives: 

                                 

2

2

( ) 1 ( )
1 0

1
A

G A G A f
M

fF

 
   


.                                 (24) 

In the case when 0f  , one has 
2 1AM G  . As f  >> 1, we get 

2 1AM  . Further, 

for the simplicity of the model we will take 0G const  . In this way equations 

(21), (22) take the form:  

                        

2

0 ( , )

4

r r
z r

B b b r z
G b b

z r r

   
  

   
,                                                    (25)

 

                      

2

0 ( , )
( , , ).

4

z z
z r

B b b r z
G b b g r z

z r z
 



   
   

   
                                (26) 

The L.H.S. of the equation (26) doesn’t depend on the angle, consequently this de-

pendence disappears for the distribution of plasma density which in our configuration 

happens to have an axially symmetric form: ( , )r z  .  

The expression (25) with the help of (14) is integrated with respect to r from some 

point infinitely distant from the knot to a point taken into the knot: 

                       

2 2

20( , ) 2 ( )
8 8

r
exr

r z ex

B Bb
r z G b b dr P z

z 

 
      

 .                  (27) 

Substituting ( , )r z  in (25) we get: 

2 2

2 20

( , ) ( )

1
           + 2 2

8 8

ex

r
exz r

r z r z

r z z

B Bb bG
b b b b dr

g r z z g z

 

 

 

     
     

     
 .  (28) 

The balance of pressures given by (27) can be rewritten as: 

                    

22 ( , , )
( , , ) ( , ) ( ) ( , , )

8 8

ex

ex m

BB r z
P r z r z P z P r z


 

 
      ,    (29) 
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where 
2 2

20 ( , , )
( , , ) 2

8 8

r
r

m r z

B b B r z
P r z G b b dr

z




 

 
    

   represents the deviation of gas 

pressure in the system from the corresponding hydrostatic distribution caused by the 

magnetic field. The gas pressure (29) depends on angle due to the term 2( , , )B r z  . The 

corresponding expression for the density of gas can be written as: 

                                

2

( , ) ( ) ( , )
8

ex

ex m

B
r z z r z

z
  




  


,                       (30) 

where  
2

2 20 2
( , ) 2

8

r
r z z r

m r z

B b b b bG
r z b b dr

g r z z


 

     
     

    
  is the deviation of density 

from the hydrostatic distribution ( )ex z owing to the presence of the magnetic field in 

the facular knot. As we see, the density doesn’t have azimuthal dependence. 

In the obtained formulas the important uncertainty is constituted by the term contain-

ing 
2

8

exB


and the derivative of it with respect to height. To consider these, we must in-

troduce an extra hypothesis. We use the simplest possible form: 2 exB const G  , 

which corresponds to the global magnetic field strength at the level of the photosphe-

re (Title & Schrijver, 1998). This field varies with height by the scale of hundreds of 

thousands of km. At the scale of chromosphere, i.e. about 2 Мm (Avrett & Loeser, 

2008), which is considered here, these changes are negligibly small and the expres-

sion for the density of the gas (30) can be considered free of the small term
2

1

8

exB

z




. 

The expressions (29), (30) with the known functions 
0 ( , )zB b r z , 

0 ( , )rB b r z
 
allow us 

to calculate the distributions of gas pressure and gas density in the stationary facular 

knot. As one can notice, the exact evaluation of the magnetic force gives the equation 

which is considerably complex in comparison to the usually used simple equation of 

pressure balance 
1 2(8 ) z exP B P    which is true only in the absence of the radial 

field, gas flow and angular variations of the field. Note, that the steady gas flow de-

scribed by the term 2

AM  enters into the balance of pressures (29) and densities (30) 

both directly through the factor C, and indirectly through the function  ( , )f A    (see 

relation (24). 
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4. The structure of the magnetic field in the facular knot 

For the magnetic structure of the facular knot, we can use, as an initial approxima-

tion, the solution for a potential field following  Schatzman (1965):  

                                                     

0 0

0 1

( )exp( ),

( )exp( ),

z

r

B B J kr kz

B B J kr kz

 

 
                                                  

(31) 

Here 
0 1( ),  ( )J kr J kr  are the Bessel functions of zeros and first orders, 

0B is the magnetic 

field strength at the level of the 0z  (it is the photosphere), k is the reciprocal height 

scale. The distributions (31) are obtained from the following magnetic flux function: 

                                                          
0 1( , ) ( )exp( )

r
A r z B J kr kz

k
  .                                 (32)  

The magnetic force of the potential field (31) naturally is zero; therefore this field 

does not produce the visible deviations in magnetic structure of facula. To get the 

non-potential, force configuration, we should introduce the respective corrections into 

the magnetic structure (31). We introduce two corrections into our model as follows: 

(i) angular dependence given by the function F (see formula (20) and Fig.1), and (ii) 

– the substitution of the exponents in (31) by the expression:  

                                                            

2
( )

exp( ) 1
Z z

kz



,                                               (33) 

This expression describes a distorted step (analogue of the Fermi-Dirac distribution). 

For 0z  this function approaches to 2exp(-kz), and therefore the magnetic field appro-

aches a potential form at large heights. For  0z  , the magnetic field in the flux tube 

which goes down stops to be dependent on the depth and tends to the constant 
02B . 

Thus, instead of (31) we have: 

                                             
 

0 0

0 1

( , ) ( ) ( ),

( , ) ( ) ( ).

z

r

B B F A Z z J kr

B B F A Z z J kr








                                                

(34) 

In the model of quiet hydrostatic solar atmosphere of Avrett & Loeser (2008), which 

we use here as the environment, the level with plasma parameters: T(0) = 6583K,              

5 7
2 3 (0) 1.228 10  ,   (0) 2.87 10

dyn g
P

cm cm
    

 
is taken as the base of the photo-

sphere. The level with the temperature of 5800K, usually regarded as a typical photo-

spheric layer, lies in this model at height of 50 km above.  
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Fig.1a. The example of 3D structure of 

magnetic field (34) with the strong angu-

lar variation. The parameters are: 

1(2 )k Mm  , 1( ) 2(1 exp(2 ))Z z kz   ,  

2

11 0.4 ( ( ) sin(15 ))F Z abs krJ kr      . 

Fig.1b. Another example of “magnetic 

fountain” with the different parameters: 

1(1 )k Mm  , 
1( ) 2(1 exp(3 ))Z z kz   , 

2

11 0.5 ( ( ) sin(20 ))F Z abs krJ kr      . 

The images of “magnetic fountains with thin trickles” shown in Fig.1a,b are 

very similar to the pictures observed  by Jafarzadeh et al (2017): “a dense forest of 

slender bright fibrils mapping the magnetic field…”,“loops are organized in canopy-

like arches…”. The pictures in Fig.1a,b are colored artificially in accordance with our 

calculations of T-profiles of the facular knots: their upper layers are hotter, than the 

lower. 

After the substitution of corrected expression for (31) in (30), we obtain for the 

pressure in the knot the following expression (here we put for simplicity G =1):  

22 2 2

2 2 20

0 0 1

( , , )

  = ( ) 1 ( , , )
8 8

ex

ex

P r z

B B Z Z Z
P z J J J f r z

Z Z




 



      
                  

,     (35)  

where 1( , , ) ( ( ) sin( ))i i

i

f r z Z abs krJ kr a m    .   

For the density, the similar formula has the following form: 
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2

2 20

1 0( , ) ( ) 2 1 1 .
8 2 2

ex

B k Z Z Z
r z z ZZ J J

g Z Z Z
 



      
                       

(36)  

Here the dash over Z indicates the derivative with respect to the argument of the ex-

ponent (kz). 

5. Temperature profiles at different heights of atmosphere 

In this Section we show the results of numerical calculations of temperature pro-

files for the facular knot defined by the formulae (33), (30), (4) and solar atmosphere 

model (Аvrett & Loeser, 2008). We will calculate the function ( , )T r   at different 

heights of the atmosphere, i.e. make a number of horizontal cross-sections of magnet-

ic configurations shown in Fig.1a,b. These T-profiles will be calculated at the level of 

photosphere (z = 0 km), temperature minimum (z = 525 km), and at heights of z = 

1032 km, z = 1520 km, z = 2024 km with the same value of inverse scale 14 ( )k Mm  . 

For the angular coefficient m, we will take different values: from 0.5 to 50, and for 

the unit of magnetic field strength two values will be used:
0 1000 B G ,

0 500 B G .  

5.1. The base of the photosphere, z = 0. The temperature of plasma is 6583K 

 
  

Fig.2а. T-profile of the 

facula at z = 0 km for 

0 1000 B G , m1 =15, m2 = 

10, a1 = a2 = 1. Along the 

axis of the knot, the tem-

perature drops below the 

photospheric value (white 

Fig. 2b.The vertical cut of 

the same temperature pro-

file. In this projection the 

central dip as well as the 

radial and the azimuthal 

variations of the tempera-

ture distribution are seen 

Fig. 2с. The same configu-

ration as in Fig. 2b, but the 

amplitudes of the function  

f  is taken to be a1 = a2 = 2.  

As a result, the central de-

pression is deepened, and 

the ring structures are 
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plane) by about 1200K 

(Wilson depression). The  

upper part of the knot is 

hotter the photosphere by 

the 250-300K. 

clearly. White plane shows 

the temperature of the pho-

tosphere. 

fragmented into separated 

“granules”. 

 

  

Fig.2d. Strong lateral asymmetry at the 

small value of angular parameter 
1 0.5m  , 

2 0m  , а1 = 2.5, a2 = 0. This image gives 

the impression that the magnetic flux tube 

is inclined to the left. Such phenomenon is 

often observed in the facular regions at 

high resolution: (Lites et al., 2004; Berger 

et al., 2007). Certainly, the magnetic flux 

tubes in facular regions can be really in-

clined, but in this case the visible effect is 

due to asymmetry of the temperature field. 

Fig.2e. Temperature field of the facula 

at the level z = 0 km for a magnetic field 

twice smaller than the previous: 

0 500 B G .The amplitude of f  is a1 = 1, 

a2 = 1 and m1 = 15 and  m2 = 10. The T- 

profile conserves its geometrical form 

under a changing magnetic field 

strength but there is a respective reduc-

tion in the temperature range of the fac-

ular knot. 

 

In all cases, at the level of photosphere there is a central dip in temperature profiles 

(similar to the Wilson’s depression in sunspots), but a facular knot as a whole is hot-

ter than the surrounding photosphere and therefore is clearly visible on the back-

ground of the photosphere. It is interested to note, that the photospheric T-profiles of 
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the facular knot are similar to usual torches that we use in the day to day life. They 

resemble a bright source with a cool handle which is used to hold the torch. 

5.2. Low chromosphere. The temperature minimum (T = 4410К), z = 525 km.  

  

Fig.3а. Temperature field of the facula at 

the level z = 525 km for a magnetic field 

0 1000 B G , a1 =3, m1=30. 

Fig.3b. The same temperature field 

for
0 500 B G . 

 

 

Fig.3c. Long filamentary fine structure at 

heights of the temperature minimum. 

0 1000 B G , a1 =3, m1=40. A narrow sec-

tor of angles ( 00 30   ) is selected in 

order to show clearly the fine fibril struc-

ture in vicinity of the knot. 

Here the temperature along the axis of faculae doesn’t decrease strongly. The 

T-profiles of faculae as a whole are situated above the background and should be ob-

served clearly at this height, the variation in temperature between lower and upper 

regions of the profile is about of 600K at the case of 
0 1000 B G  and about 100K with 

the 
0 500 B G . We once again see that the geometrical form of the temperature pro-

file doesn’t change for large changes of the corresponding magnetic field strength, 

here only the temperature range changes. 

In Fig.3c, a set of very long, slender and bright filaments is presented. 
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5.3. Level of z = 1003 km, the temperature of chromosphere is 6225К 

  

Fig.4а. Temperature field of the facula at 

the level z =1003 km for a magnetic field 

0 1000 B G . For the azimuthal number it 

is taken m1 = 40, a =3.  

Рис.4b.Temperature field of the facula at 

the level z = 1003 km for a magnetic field 

twice smaller than the previous:
 

0 500 B G  m1 = 40, a =3. 

 

 

Fig.4c. At the height of 1003 km the fine 

filamentary structure of the field is al-

ready expressed to a much lesser extent. 

The same parameters as in Fig.3c: 

0 1000 B G , m1 = 40, a =3 are taken. 

Here the temperature is large enough at the narrow central region of the faculae but 

the main body and periphery are slightly hotter than the surroundings. 

 5.4. Level with z = 1520 km, the temperature of chromosphere is 6623К.
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Fig. 5а. Temperature field of the facula at 

the level z = 1520 km for a magnetic field 

0 1000 B G , m=20, a =3. 

Fig.5b. T-profile for the facula at the lev-

el z = 1520 km at
0 500 B G . The range of 

temperature is decreased. 

At these altitudes, the temperature in the central region of the faculae is high and the 

faculae as a whole appears to be hotter than the surroundings. Here the white plane 

surface doesn’t represent the temperature of background that is 1000K lower than the 

average temperature of the facula. This plane represents only the temperature of the 

lowest layer of the faculae. Here the angular variation of the field doesn’t play a no-

ticeable role. 

5.5. Level near the transition region, z = 2024 km, the temperature of the chro-

mosphere is 6680K. 

At the height of transition region we approach the boundary of the applicability of 

our model. Here the magnetic field in the flux tube becomes smaller than the external 

magnetic field, and the constant pressure of this external field 2 1 2(8 ) 0.16 /exB dyn cm    

gives the main contribution to the gas pressure of the facula. Therefore, as we see 

from Fig. 6ab, the temperature of the faculae markedly increases and ceases to de-

pend on the field strength in the facular tube. Obviously, these results do not make 

sense in quantitative terms; they can only qualitatively indicate that the temperature 

of the facula somehow increases with height. 
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Fig.6а. T- profile for 
0 1000 B G , at the 

level z = 2024 km. White plane surface 

represents here the level of temperature 

13859 К, which is twice higher than the  

background with T = 6680К. 

Fig.6b. Т-profile of the facula at the level 

2024 km for the smaller magnetic field 

0 500 B G . The profile is not sensitive to 

the change of 
0.B   

 

6. Center-to-Limb Variation Problem 

The problem of brightness variations of faculae when they move along the so-

lar disc is one of hard tasks of solar physics. The model of “hot walls” (Spruit, 1976) 

works satisfactorily on the disk, but it completely falls near the limb (Libbrecht & 

Kuhn,1984). In our model, according to the results above, we can present the emitting 

facular surfaces as a combination of a horizontal bases (S1 and S2 ) of the facula, with 

a temperature slightly above the background, and the bright lateral surface of a verti-

cal cylinder (magnetic flux tube) (Fig.7a). The dependence of total contrast of such 

emitted configuration on the angle 
 
between the observer and the normal to the solar 

surface will be defined by following simple formula: 

                    cos sin
I

Contrast C L
I

 


   .                                    (37)   

Here coefficients C and L are small positive numbers which should be searched on 

the base of observations. The coefficient C defines the contrast of faculae near the 

center of solar disc (about 0.03) and L gives the contrast of faculae at the limb (about 

0.20). The corresponding curve is present in Fig.7b. 
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Fig.7a. Sketch of emitting sur-

face of a facular knot. The 

height of the vertical column is 

about of the scale height of the 

chromosphere ( 200 
T

H km
g


  ). 

Fig.7b. Contrast of facular knot as function of an-

gle   given by (37) with C = 0.03 and L = 0.20. 

Open circles are the data of Wang & Zirin (1987). 

Deviations of the circles from the model curve at 

75o  can be caused by dark pores (and micro-

pores), which are well seen on the disc and be-

come invisible near the limb, at 80o  , due to 

their dark depression. 

 

7. Conclusions 

1. A steady state 3D MHD model for the solar facular knot with fine filamentary 

structure of the magnetic field is constructed. Analytical formulae for the calculation 

of stationary distributions of gas pressure, density, Alfven Mach number and temper-

ature according to the given magnetic configuration are derived. 

2. Facular magnetic configuration with external magnetic field of 2 G is intro-

duced for the real solar atmosphere described by the Avrett & Loeser (2008) model. 

3.   Numerically evaluated profiles of plasma temperature inside the facular knot at 

the level of the photosphere have the negative contrast at the axis (Wilson’s depres-

sion), but at the nearest vicinities the temperature sharply rises and local rise in tem-

perature of the individual facular granules above the surrounding medium is observed 

all along the area of the faculae. The geometry of T-profiles doesn’t change even for 

large magnetic field variations. The variation of magnetic field only results in the 

change of the temperature range in the facula. 
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4. At the height of the temperature minimum (525 km), the entire profile of the facu-

lae is located above the background and has temperature 1.2 times more that of the 

ambient plasma at this level. 

5. At the heights of 1500 km above the photosphere, the gas of faculae is remarkable 

hotter than the ambient plasma at the same level. Most likely that due to the fact that 

faculae have a high temperature at the heights above 1 Mm, the observers distinguish 

between faculae and flocculi as two different phenomena. Faculae are considered to 

be photospheric and lower chromospheric phenomena and flocculi are considered to 

be the upper chromospheric phenomena. 

6. In whole, the parameters and of the proposed model are in good correspondence 

with the most recent observational data of the solar faculae. This model in particular 

firstly describes the very fine filamentary arches-like structure of facular magnetic 

fields (magnetic “fountains” with the slender fibrils) as well as concentric rings, half 

rings and segmental brightening observed in the facular fields at high angular resolu-

tion at the photosphere level (Lites et al., 2004; Berger et al., 2007). 

7. The new approach to the classic Center-to-Limb Variation Problem is proposed. 

 

The work was supported by the Russian Foundation of Basic Researches (project № 

18-02-00168) and Russian Science Foundation (project 15-12-20001). 

 

REFERENCES 

Аvrett E. H. & Loeser R., (2008). Models of the Solar Chromosphere and Transition 

Region from Sumer and HRTS Observations: Formation of  the Extreme-Ultraviolet 

Spectrum of Hydrogen, Carbon and Oxygen. The Astrophysical Journal Supplement 

Series, 175: 229-276.  

Baltasar H. (1990). The oscillatory behavior of solar faculae. Sol.Phys. 127, 289-292.  

Berger T.E., Rouppe L. van der Voort, Lofdahl M. (2007). Contrast analysis of solar 

faculae and magnetic bright points. Astrophys. J., 661, 1272-1288.  

Chelpanov, A.A., Kobanov, N.I., Kolobov, D.Y., (2015). Characteristics of oscilla-

tions in magnetic knots of solar faculae. Astron. Rep., 59, 968-973.  

Chapman G.A. & Klabunde D.P. (1982). Measurements of the limb darkening of fac-

ulae near solar limb. Astrophys.J. 261, 387-393 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/sty3050/5184491 by guest on 17 N

ovem
ber 2018



Jafarzadeh S., Rutten R.J., Solanki S.K. et al. (17 authors). (2017). Slender CAII H 

Fibrils Mapping Magnetic Field in the Low Solar Chromosphere. Astrophys. J. Supll. 

Ser. 229:11(11pp). 

Kolotkov, D. Y., Smirnova, V. V., Strekalova, P. V., Riehokainen, A., Nakaria-

kov, V. M. (2017). Long-period quasi-periodic oscillations of a small-scale magnetic 

structure on the Sun, Astronomy & Astrophysics, Vol. 598, id. L2, 4 pp. 

Kostik, R. & Khomenko, E.R. The possible origin of facular brightness in the solar 

atmosphere. Astronomy & Astrophysics,,V. 589, id.A6, 7 PP. (2016). 

Libbrecht K.G.& Kuhn J.R. (1984) A new measurements of the facular contrast near 

the solar limb. Astrophys. J. 277, pp. 889-896. 

Lites B. W., Scharmer G. B., Berger T. E. and Title A. M. (2004). Three-dimensional 

structure of the active region photosphere as revealed by high angular resolution.  So-

lar Phys.  221, 65-84.  

Mehltretter J.P. (1974). Observations of photospheric faculae at the center of the solar 

disk. Solar Phys.  38, 43-57.  

Nakariakov, V.M., Aschwanden, M.J., & van Doorsselaere T. (2009).The possible 

role of vortex shedding in the excitation of kink-mode oscillations in the solar corona. 

Astronomy & Astrophysics, Vol. 502, P. 661-664.  

Okunev O.V., Kneer F. (2004). On the structure of polar faculae on the Sun. Astron-

omy & Astrophysics, Vol. 425, P. 321-331.  

Pietarila, A.; Hirzberger, J.; Zakharov, V.; Solanki, S. K. (2009). Bright fibrils in Ca 

II K . Astronomy and Astrophysics, Vol. 502, pp.647-660. 

Quintero Noda C.; Suematsu Y.; Cobo Ruiz B.;Shimizu T.; Asensio A. Ramos. 

(2016). Analysis of spatially deconvolved polar faculae. Monthly Notices of the Roy-

al Astronomical Society, 460, 956–965.  

Shatten K.H., Mayr H.G., Omidrav K., Maier E. (1986). A hillock and cloud model 

for faculae. The Astrophysical Journal.  311. 460-473. 

Schatzman E. (1965). Model of a force free field. IAU Symp. 22, Stellar and solar 

magnetic fields, Amsterdam, 337-345.  

Scherrer P.H., Shou J., Bush R.I. et.al (13 authors), (2012) The Helioseismic and 

Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO), 

Solar Physics. Vol. 275, pp. 207-227. DOI: 10.1007/s11207-011-9834-2 

Solov’ev A.A., Kirichek E.A. (2016).  Analytical Model of an asymmetric sunspot 

with a steady plasma flow in its penumbra. Solar Physics.Vol. 291, №6, 1647–1663.  

Solov’ev A. A., Kirichek E.A. (2015). Magnetohydrostatics of a vertical flux tube in 

the solar atmosphere: coronal loops, a model of a ring flare filament. Astronomy Let-

ters, vol.41, no.5, pp. 211-224. DOI: 10.1134/S1063773715050072). 

Spruit H.C.(1976). Pressure equilibrium and energy balance of small photospheric 

flux tubes. Solar Phys.Vol.50, pp. 269-295.  

Strekalova, P.V.; Nagovitsyn, Yu.A.; Riehokainen, A.; Smirnova, V.V. (2016).Long-

period variations in the magnetic field of small-scale solar structures. Geomagnetism 

and Aeronomy, Vol. 56, Issue 8, pp.1052-1059.  

Title A.M. & Schrijver C.J. (1998). The Sun’s magnetic carpet. Cool stars, Stellar 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/sty3050/5184491 by guest on 17 N

ovem
ber 2018

http://adsabs.harvard.edu/cgi-bin/author_form?author=Pietarila,+A&fullauthor=Pietarila,%20A.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Hirzberger,+J&fullauthor=Hirzberger,%20J.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Zakharov,+V&fullauthor=Zakharov,%20V.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Solanki,+S&fullauthor=Solanki,%20S.%20K.&charset=UTF-8&db_key=AST
https://doi.org/10.1007/s11207-011-9834-2
http://dx.doi.org/10.1134/S1063773715050072


Sytems and Sun. ASP Conf, Series. Vol.154, 345-358.  

Title A.M., Topka K.P., Tarbell T.D. et al., (1992).On the differences between plage 

and quiet Sun in the solar photosphere. Astrophys. J. 393, 782-794.  

Wang H. & Zirin H. (1987) The contrast of faculae near the solar limb. Solar 

Phys.110, 281-293. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/sty3050/5184491 by guest on 17 N

ovem
ber 2018




